Основные принципы устройства и работы эвм

Самое полное описание темы: "Основные принципы устройства и работы эвм" с комментариями специалистов. На все сопутствующие вопросы вам сможет ответить дежурный юрист.

Основные принципы устройства и работы эвм

Основные принципы построения ЭВМ были сформулированы американским учёным Джоном фон Нейманом в 40-х годах 20 века:

    1. Любую ЭВМ образуют три основные компоненты: процессор, память и устройства ввода-вывода (УВВ).

2. Информация, с которой работает ЭВМ делится на два типа:

    • набор команд по обработке (программы);
    • данные подлежащие обработке.

    3. И команды, и данные вводятся в память (ОЗУ) – принцип хранимой программы .

    4. Руководит обработкой процессор, устройство управления (УУ) которого выбирает команды из ОЗУ и организует их выполнение, а арифметико-логическое устройство (АЛУ) проводит арифметические и логические операции над данными.

    5. С процессором и ОЗУ связаны устройства ввода-вывода (УВВ).

    Архитектура современных персональных компьютеров основана на магистрально-модульном принципе . Информационная связь между устройствами компьютера осуществляется через системную шину (другое название — системная магистраль).

    Шина — это кабель, состоящий из множества проводников. По одной группе проводников — шине данных передаётся обрабатываемая информация, по другой — шине адреса — адреса памяти или внешних устройств, к которым обращается процессор. Третья часть магистрали — шина управления , по ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др).

    Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется разрядностью шины . Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.

    Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом , передаваемым по адресной шине. Это может быть адрес ячейки памяти или адрес периферийного устройства. Необходимо, чтобы разрядность шины позволила передать адрес ячейки памяти. Таким образом, словами разрядность шины ограничивает объем оперативной памяти ЭВМ, он не может быть больше чем , где n – разрядность шины. Важно, чтобы производительности всех подсоединённых к шине устройств были согласованы. Неразумно иметь быстрый процессор и медленную память или быстрый процессор и память, но медленный винчестер.

    Ниже представлена схема устройства компьютера, построенного по магистральному принципу:

    В современных ЭВМ реализован принцип открытой архитектуры, позволяющий пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости её модернизацию. Конфигурацией компьютера называют фактический набор компонентов ЭВМ, которые составляют компьютер. Принцип открытой архитектуры позволяет менять состав устройств ЭВМ. К информационной магистрали могут подключаться дополнительные периферийные устройства, одни модели устройств могут заменяться на другие.

    Аппаратное подключение периферийного устройства к магистрали на физическом уровне осуществляется через специальный блок — контроллер (другие названия — адаптер, плата, карта). Для установки контроллеров на материнской плате имеются специальные разъёмы — слоты .

    Программное управление работой периферийного устройства производится через программу — драйвер , которая является компонентой операционной системы. Так как существует огромное количество разнообразных устройств, которые могут быть установлены в компьютер, то обычно к каждому устройству поставляется драйвер, взаимодействующий непосредственно с этим устройством.

    Связь компьютера с внешними устройствами осуществляется через порты – специальные разъёмы на задней панели компьютера. Различают последовательные и параллельные порты. Последовательные (COM – порты) служат для подключения манипуляторов, модема и передают небольшие объёмы информации на большие расстояния. Параллельные (LPT — порты) служат для подключения принтеров, сканеров и передают большие объёмы информации на небольшие расстояния. В последнее время широкое распространение получили последовательные универсальные порты (USB), к которым можно подключать различные устройства.

    Минимальная конфигурация компьютера включает в себя: системный блок, монитор, клавиатуру и мышь.

    Источник: http://inf.e-alekseev.ru/text/Prin_postr.html

    Устройство и принцип действия ЭВМ

    ЭВМ – это комплекс технических средств, предназначенных для автоматической обработки информации.

    Процессор осуществляет процесс обработки данных и управляет работой машины. В состав процессора входят: Устройство управления (УУ) – формирует адрес очередной микрокоманды, Арифметико – логическое устройство (АЛУ) – выполняет арифметические и логические операции над данными. Регистры общего назначения (РОН) – для хранения промежуточных результатов. КЕШ – память служит для повышения быстродействия процессора. Системная шина обеспечивает взаимодействие всех узлов между собой. Память предназначена для записи, хранения, выдачи команд и обрабатываемых данных.

    Основная память (ОП) – предназначена для хранения и оперативного обмена информацией с прочими блоками машины.

    Внешняя память (ВЗУ) предназначена для долговременного хранения больших объемов информации и обмена ею с ОЗУ. Во внешней памяти хранится все программное обеспечение ПК. Для ее построения используют энергонезависимые носители. Емкость памяти практически не ограничена, но для обращения к ней требуется больше времени, чем к внутренней. Конструктивно ВЗУ отделены от процессора и внутренней памяти, имеют собственное управление.

    Внешние устройства: устройства ввода информации: клавиатура, сканеры (читающие автоматы), графические планшеты (для ручного ввода графической информации), манипуляторы (устройства указания) – мышь, джойстик, трекбол, световое перо, сенсорные экраны. устройства вывода информации: принтеры – печатающие устройства для регистрации информации на бумажный носитель, графопостроители (плоттеры) – для вывода графической информации из ПК на бумажный носитель, акустические колонки – для вывода звуковой информации. Модем выполняет функции устройств ввода и вывода информации. Он позволяет соединиться с другим удаленным компьютером с помощью телефонных линий связи и обмениваться информацией между ЭВМ.

    Основные принципы действия ЭВМ I. Принцип программного управления последовательностью вычислений. II. Принцип хранимой в памяти программы. Перед решением задачи на ЭВМ программа и исходные данные помещаются в ее память. Предварительно управляющая программа загружается в ОЗУ. ОЗУ содержит некоторое число ячеек, каждая их которых служит для хранения машинного слова. Ячейки нумеруются, номер ячейки называется адресом.

    Читайте так же:  Муж выплачивает алименты на двоих детей

    Команды программы в цифровом виде хранятся в памяти наравне с числами. В команде указываются не сами участвующие в операции числа, а адреса ячеек ОП, в которых находятся числа и помещаются результат операций.

    В ОЗУ выполняются операции считывания хранимой информации для передачи в другие устройства и записи информации, поступающей из других устройств. При считывании слова из ячейки содержимое последней не меняется и при необходимости слово может быть снова взято из той же ячейки. При записи хранившееся в ячейке слово стирается и его место занимает новое.

    При выполнении загруженной программы ЭВМ запрашивает у пользователя необходимые данные и процессор после выполнения указанных в программе команд отправляет результат по системной шине на устройство вывода. Внешняя память сравнительно медленно действует, но способна хранить больший объем информации, чем ОЗУ.

    Непосредственно в вычислительном процессе участвует только оперативная память, и лишь после окончания отдельных этапов вычислений из внешней памяти в оперативную передается информация, необходимая для следующего этапа решения задачи. Перед окончанием работы информация из ОЗУ переписывается в ВЗУ, а перед возобновлением работы из ВЗУ переписывается обратно в ОЗУ. Наиболее прогрессивным режимом работы компьютера является диалоговый режим. Выполнение основной программы иногда может приостанавливаться с целью выполнения другого срочного задания. Такой режим работы называется прерыванием. По завершению обслуживания прерывания процессор возвращается к выполнению временно отложенной программы. Прерывание – временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной (приоритетной) программы. Процессор все время что-то делает, но в то же время ждет внешних прерываний. Систему прерываний (диалог) обеспечивает операционная система.

    Дата добавления: 2015-04-24 ; Просмотров: 1738 ; Нарушение авторских прав? ;

    Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

    Источник: http://studopedia.su/15_72733_ustroystvo-i-printsip-deystviya-evm.html

    Общий принцип работы ЭВМ

    Основной функцией системной шины является передача информации между процессором и остальными устройствами. Системная шина состоит из трех шин:

    o шины управления;

    По этим шинам циркулируют управляющие сигналы, данные (числа, символы), адреса ячеек памяти и номера устройств ввода-вывода.

    Работа процессора происходит под управлением программы. Арифметико-логическое устройство (АЛУ) выполняет арифметические и логические операции над данными. Промежуточные результаты сохраняются в регистрах общего назначения (РОН). КЭШ-память служит для повышения быстродействия процессора путем уменьшения времени его непроизводительного простоя. Устройство управления (УУ) отвечает за порядок выполнения команд, из которых состоит программа.

    Принцип функционирования ЭВМ заключается в следующем. Из процессора на шину адреса выдается адрес очередной команды. Считанная по этому адресу команда (например, из ПЗУ), поступает по шине данных в процессор, где она выполняется с помощью АЛУ. УУ процессора определяет адрес следующей команды (точнее, фактический номер очередной ячейки памяти, где находится очередная команда). После выполнения процессором текущей команды, на шину адреса выводиться адрес ячейки памяти, где храниться следующая команда и т. д.

    Сигналы, передаваемые по управляющей шине, синхронизируют работу процессора, памяти, устройств ввода и вывода информации.

    Порядок выбора адресов из памяти (и очередности выполнения команд) определяет программа, находящаяся, чаще всего, в ОЗУ.

    Выполнение основной программы иногда может приостанавливаться с целью выполнения какого-то другого срочного задания, например, передачи данных на принтер. Такой режим работы, когда временно приостанавливается выполнение основной программы и происходит обслуживание запроса, называется прерыванием. По завершении обслуживания прерывания, процессор возвращается к выполнению временно отложенной программы.

    Рис. 2.1.6. Принципиальная схема ЭВМ

    Запросы на прерывание могут возникать из-за сбоев аппаратуры, переполнения разрядной сетки, деления на ноль и т. п. Обслуживание прерывания осуществляется с помощью специальных программ обработки прерываний.

    Очевидно, что конструкция современной ЭВМ намного сложнее рассмотренной конструкции. На структурной схеме не изображен тактовый генератор (который подключен к процессору), адаптеры, контроллеры, включенные между системной шиной и каждым устройством ввода-вывода, и другие блоки. Однако выбранный уровень детализации позволяет легче понять общий принцип работы ЭВМ.

    Дата добавления: 2014-01-04 ; Просмотров: 555 ; Нарушение авторских прав? ;

    Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

    Источник: http://studopedia.su/5_19461_obshchiy-printsip-raboti-evm.html

    Устройство и принцип действия ЭВМ

    Устройство управления (УУ) координирует работу всех блоков компьютера. В определенной последовательности он выбирает из оперативной памяти команду за командой. Каждая

    Устройство и принцип действия ЭВМ

    Другие материалы по предмету

    УСТРОЙСТВА И ПРИНЦИП ДЕЙСТВИЯ ЭВМ

    ЭВМ (компьютер) — это электронное устройство, которое выполняет операции ввода информации, хранения и обработки ее по определенной программе, вывод полученных результатов в форме, пригодной для восприятия человеком. За любую из названных операций отвечают специальные блоки компьютера:

    Центральный процессор ЭВМ

    Центральный процессор (ЦП) — программно-управляемое устройство обработки информации, предназначенное для управления работой всех блоков машины и выполнения арифметических и логических операций. Функции процессора: чтение команд из ОЗУ; декодирование команд, то есть определение их назначения, способа выполнения и адресов операндов; исполнение команд; управление пересылкой информации между МПП, ОЗУ и периферийными устройствами; обработка прерываний; управление устройствами, составляющими ЭВМ. Центральный процессор состоит из устройства управления, арифметико-логического устройства, микропроцессорной памяти, интерфейсной системы.

    Арифметико-логическое устройство (АЛУ) — это устройство, которое выполняет арифметические действия и логические операции над данными.

    Устройство управления (УУ) координирует работу всех блоков компьютера. В определенной последовательности он выбирает из оперативной памяти команду за командой. Каждая команда декодируется, по потребности элементы данных из указанных в команде ячеек оперативной памяти передаются в АЛУ; АЛУ настраивается на выполнение действия, указанной текущей командой (в этом действии могут принимать участие также устройства ввода-вывода); дается команда на выполнение этого действия. Этот процесс будет продолжаться до тех пор, пока не возникнет одна из следующих ситуаций: исчерпаны входные данные, от одного из устройств поступила команда на прекращение работы, выключено питание компьютера.

    Читайте так же:  Устройство работы рулевых механизмов

    Микропроцессорная память (МПП) — память небольшой емкости, но чрезвычайно высокого быстродействия (время обращения к МПП примерно 1 нс). Данная память выступает в роли «черновика» для вычислений процессора.

    Оперативное запоминающее устройство (ОЗУ) предназначено для хранения информации (программ и данных), непосредственно участвующей в работе ЭВМ в текущий или в последующие моменты времени. ОЗУ — энергозависимая память, то есть при отключении питания записанная в нем информация теряется. ОЗУ состоит из больших интегральных схем (БИС), содержащие матрицу ячеек памяти, состоящих из триггеров — полупроводниковых запоминающих элементов, которые способны находиться в двух устойчивых состояниях, соответствующих логическим нулю и единице.

    Внутренняя память дискретна, ее информационная структура представляет собой матрицу двоичных ячеек, в каждой из которых хранится по 1 биту информации. Она адресуема: каждый байт (8 ячеек по 1 биту) имеет свой адрес — порядковый номер. Доступ к байтам ОЗУ происходит по адресам. Так как ОЗУ позволяет обратиться к произвольному байту, то эта память называется памятью произвольного доступа (англ. Random Access Memory — RAM).

    Постоянное запоминающее устройство (ПЗУ, англ. ROM — Read-Only Memory) — энергонезависимая память, используется для хранения массива неизменяемых данных. В частности, в ПЗУ компьютера записана базовая система ввода-вывода (BIOS), отвечающая за самые базовые функции интерфейса и настройки оборудования, на котором она установлена.

    Полупостоянная запоминающее устройство (ППЗУ, англ. CMOS — Complementary Metal Oxide Semiconductor) — энергонезависимая память, содерживое которой можно изменить. В ППЗУ хранятся параметры BIOS.

    Носитель информации — материальный объект, используемый для хранения информации. Различают бумажные носители (перфокарты, перфоленты), магнитные носители (ленты, диски, барабаны), оптические носители (CD и DVD) и полупроводниковые носители (Flash-память).

    Накопитель — механическое устройство, управляющее записью, хранением и считыванием данных. Различают накопители на гибких магнитных дисках (ГМД) и накопители на жестких магнитных дисках (ЖМД), накопители на оптических и магнитооптических дисках (ОД), а так же флеш-карты (флешки).

    Накопитель на жестком магнитном диске (ЖМД) состоит из нескольких магнитных дисков МД, насаженных на один вал двигателя, вблизи которых расположены магнитные головки, связанные с механическим приводом. Информацию на МД записывается и считывается магнитными головками вдоль концентрических окружностей — дорожек (треков). Цилиндр — совокупность дорожек МД, равноудаленных от его центра. Каждая дорожка МД разбита на секторы — области емкостью 512 байт, определяемые идентификационными метками и номером. Сектор — минимальный объем данных, с которым могут работать программы в обход ОС.

    Обмен данными между МД и ОЗУ осуществляется последовательно целым числом секторов. Кластер — минимальный объем размещения информации на диске, воспринимаемый ОС, он состоит из одного или нескольких смежных секторов дорожки. Форматирование диска — разметка на диске дорожек (треков) и секторов, маркировка дефектных секторов, запись служебной информации

    компьютер процессор информация

    Процесс взаимодействия пользователя с компьютером (ЭВМ) непременно включает процедуры ввода входных данных и получение результатов обработки этих данных. Поэтому, обязательными составляющими типичной конфигурации ЭВМ являются разнообразные устройства ввода-вывода. Каждое такое устройство подключено через свой контроллер. К стандартным устройствам ввода-вывода относятся монитор, клавиатура, манипулятор (мышь) и принтер.

    Монитор (дисплей) — это стандартное устройство вывода, предназначенное для визуального отображения текстовых и графических данных. В зависимости от принципа действия, мониторы делятся на:

    мониторы с электронно-лучевой трубкой;

    дисплеи на жидких кристаллах.

    Работой монитора руководит специальная плата — контроллер, которую называют видеоадаптером (видеокартой). Вместе с монитором видеокарта создает видеоподсистему персонального компьютера. В первых компьютерах видеокарты не было. В оперативной памяти существовал участок памяти, куда процессор заносил данные об изображении.

    С увеличением разрешающей способности экрана, участка видеопамяти стало недостаточно для хранения графических данных, а процессор не успевал обрабатывать изображения. Все операции, связанные с управлением экрана были отведены в отдельный блок — видеоадаптер.

    Клавиатура — это стандартное клавишное устройство ввода, предназначенное для ввода алфавитно-цифровых данных и команд управления. Комбинация монитора и клавиатуры обеспечивает простейший интерфейс пользователя: с помощью клавиатуры руководят компьютерной системой, а с помощью монитора получают результат.

    Клавиатура относится к стандартным средствам ЭВМ, поэтому для реализации ее основных функций не требуется наличие специальных системных программ (драйверов). Необходимое программное обеспечение для работы с клавиатурой находится в микросхеме постоянной памяти в составе базовой системы ввода-вывода BIOS.

    Мышка — это устройство управления манипуляторного типа. Перемещение мышки по поверхности синхронизировано с перемещением графического объекта, который называется курсор мышки, по экрану монитора.

    Принтер — устройство печати цифровой информации на твёрдый носитель, обычно на бумагу. Принтеры бывают:

    сублимационные (печать паром).

    В последнее время принтеры всё чаще стали использоваться не только для печати на бумаге. Радиолюбители используют лазерные принтеры в «лазерно-утюжной» технологии изготовления плат, нанося маску для травления с помощью лазерного принтера.

    Все функциональные узлы компьютера связаны между собой через системную магистраль, представляющую из себя более трёх десятков упорядоченных микропроводников, сформированных на печатной плате.

    Магистраль включает в себя три многоразрядные шины:

    По шине данных данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения.

    Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам.

    Читайте так же:  Порядок расследования дисциплинарного проступка

    По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют какую операцию считывание или запись информации из памяти нужно производить, синхронизируют обмен информацией между устройствами и т.д.

    В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым венгерского происхождения Джоном фон Нейманом.

    Принцип программного управления. Программа состоит из набора команд, выполняющихся процессором автоматически в определенной последовательности.

    Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательн

    Источник: http://www.studsell.com/view/187842/

    kpet-ks.ru

    Компьютерные сети. г.Котово

    ОСНОВОПОЛАГАЮЩИЕ ПРИНЦИПЫ УСТРОЙСТВА ЭВМ

    В каждой области науки и техники существуют фундаментальные идеи или принципы, определяющие на многие годы вперёд её содержание и направление развития. В компьютерных науках роль таких фундаментальных идей сыграли принципы, сформулированные независимо друг от друга двумя крупнейшими учёными XX века — Джоном фон Нейманом и Сергеем Алексеевичем Лебедевым.

    Архитектура компьютера – это его устройство и принципы взаимодействия его основных элементов – логических узлов, среди которых основными являются процессор, внутренняя память (основная и оперативная), внешняя память и устройства ввода-вывода информации (периферийные).

    Архитектура фон Неймана (модель фон Неймана, Принстонская архитектура) — широко известный принцип совместного хранения команд и данных в памяти компьютера.

    Вычислительные машины такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают принцип хранения данных и инструкций в одной памяти.

    Принцип — основное, исходное положение какой-нибудь теории, учения, науки и пр.

    Основы учения об архитектуре вычислительных машин, которые рассматриваются на уроке, были заложены Джоном фон Нейманом. Более подробно о логических узлах, а также о магистрально-модульном принципе архитектуры современных персональных компьютеров можно будет узнать на этом уроке.

    Принципы Неймана-Лебедева — базовые принципы построения ЭВМ, сформулированные в середине прошлого века, не утратили свою актуальность и в наши дни.

    Рассмотрим сущность основных принципов Неймана-Лебедева:

    1) состав основных компонентов вычислительной машины;
    2) принцип двоичного кодирования;
    3) принцип однородности памяти;
    4) принцип адресности памяти;
    5) принцип иерархической организации памяти;
    6) принцип программного управления.

    Видео (кликните для воспроизведения).

    Первый принцип определяет состав основных компонентов вычислительной машины.

    Любое устройство, способное производить автоматические вычисления, должно иметь определённый набор компонентов: блок обработки данных, блок управления, блок памяти и блоки ввода/вывода информации.

    Его информационным центром является процессор:

    • все информационные потоки (тонкие стрелки на рисунке) проходят через процессор;
    • управление всеми процессами (толстые стрелки на рисунке) также осуществляется процессором.

    Такие блоки есть и у современных компьютеров. Это:

    процессор, состоящий из арифметико-логического устройства (АЛУ), выполняющего обработку данных, и устройства управления (УУ), обеспечивающего выполнение программы и организующего согласованное взаимодействие всех узлов компьютера;
    память, предназначенная для хранения исходных данных, промежуточных величин и результатов обработки информации, а также самой программы обработки информации. Различают память внутреннюю и внешнюю. Основная часть внутренней памяти используется для временного хранения программ и данных в процессе обработки. Такой вид памяти принято называть оперативным запоминающим устройством (ОЗУ). Ещё одним видом внутренней памяти является постоянное запоминающее устройство (ПЗУ), содержащее программу начальной загрузки компьютера. Внешняя или долговременная память предназначена для длительного хранения программ и данных в периоды между сеансами обработки;
    устройства ввода, преобразующие входную информацию в форму, доступную компьютеру;
    устройства вывода, преобразующие результаты работы компьютера в форму, доступную для восприятия человеком.

    Вместе с тем в архитектуре современных компьютеров и компьютеров первых поколений есть существенные отличия.

    Второй принцип

    Рассмотрим суть принципа двоичного кодирования информации.

    Вся информация, предназначенная для обработки на компьютере (числа, тексты, звуки, графика, видео), а также программы её обработки представляются в виде двоичного кода — последовательностей 0 и 1.

    Все современные компьютеры хранят и обрабатывают информацию в двоичном коде. Выбор двоичной системы счисления обусловлен рядом важных обстоятельств: простотой выполнения арифметических операций в двоичной системе счисления, её «согласованностью» с булевой логикой, простотой технической реализации двоичного элемента памяти (триггера).

    Итак, благодаря двоичному кодированию, данные и программы по форме представления становятся одинаковыми, а следовательно, их можно хранить в единой памяти.

    Несмотря на всеобщее признание, использование в компьютерной технике классической двоичной системы счисления не лишено недостатков. В первую очередь это проблема представления отрицательных чисел, а также нулевая избыточность (т. е. отсутствие избыточности) двоичного представления. Пути преодоления указанных проблем были найдены уже на этапе зарождения компьютерной техники.

    В 1958 г. в Московском государственном университете им. М. В. Ломоносова под руководством И. П. Брусенцова был создан троичный компьютер «Сетунь» (рис. 1). В нём применялась уравновешенная троичная система счисления, использование которой впервые в истории позволило представлять одинаково просто как положительные, так и отрицательные числа.

    «Сетунь» представляет собой малую ЭВМ, построенную на принципах троичной логики, другими словами это троичный компьютер. Она была разработана в 1959 году в стенах вычислительного центра Московского государственного университета. Этот уникальный троичный компьютер, практически не имеет аналогов не только в данный момент времени, но и вообще в истории вычислительной техники.

    Для начала разберёмся, что же такое троичный компьютер, коим, как уже было сказано, является рассматриваемая модель «Сетунь». Такое название получил специализированный компьютер, который построен на логических элементах и узлах двух типов – как на классических двоичных, так и уникальных в своём роде троичных. Понятно, что он использует в своей работе соответственные системы счисления, логики и алгоритмы работы – двоичные и троичные.

    Читайте так же:  Отпуск с последующим увольнением по собственному желанию

    Принцип однородности памяти

    Согласно принципу однородности памяти команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы. Распознать их можно только по способу использования. … Концепция машины фон Неймана, предполагает единую память для хранения команд и данных.

    Согласно принципу адресности основная память структурно состоит из пронумерованных ячеек, причем процессору в произвольный момент доступна любая ячейка.

    Принцип иерархической организации памяти

    Иерархия компьютерной памяти — концепция построения взаимосвязи классов разных уровней компьютерной памяти на основе иерархической структуры.

    Сущность необходимости построения иерархической памяти — необходимость обеспечения вычислительной системы (отдельного компьютера или кластера) достаточным объёмом памяти, как оперативной, так и постоянной.

    Учитывая неоднородность периодичности обращения к конкретным записям (внутренним регистрам процессора, кэш-памяти, страницам и файлам) применяются различные технические решения, имеющие отличные характеристики, как технические так ценовые и массо-габаритные. Долговременное хранение в дорогой сверхоперативной и даже оперативной памяти, как правило, не выгодно, поэтому данные такого рода хранятся на накопителях — дисковых, ленточных, флеш и т.д.

    Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий компьютера.

    Узкое место архитектуры фон Неймана

    Архитектура фон Неймана обладает тем недостатком, что она последовательная. Какой бы огромный массив данных ни требовалось обработать, каждый его байт должен будет пройти через центральный процессор, даже если над всеми байтами требуется провести одну и ту же операцию.

    Совместное использование шины для памяти программ и памяти данных приводит к узкому месту архитектуры фон Неймана, а именно ограничению пропускной способности между процессором и памятью по сравнению с объёмом памяти.

    Из-за того, что память программ и память данных не могут быть доступны в одно и то же время, пропускная способность канала «процессор-память» и скорость работы памяти существенно ограничивают скорость работы процессора — гораздо сильнее, чем если бы программы и данные хранились в разных местах. Так как скорость процессора и объём памяти увеличивались гораздо быстрее, чем пропускная способность между ними, узкое место стало большой проблемой, серьёзность которой возрастает с каждым новым поколением процессоров.

    Этот эффект называется узким горлышком фон Неймана.

    Современную обработку информации невозможно представить без такого устройства, как компьютер. Его следует рассматривать, как совокупность двух составляющих:

    Компьютеры, построенные на принципах фон Неймана, имеют классическую архитектуру, но, кроме нее, существуют другие типы архитектуры. Например, Гарвардская. Ее отличительными признаками являются:

    • хранилище инструкций и хранилище данных представляют собой разные физические устройства;
    • канал инструкций и канал данных также физически разделены.

    Перспективы развития ЭВМ

    Согласно сегодняшней тенденции, уровень глобальных сетей будет увеличиваться, в связи с этим будут разрабатываться новые методы хранения, обработки, представления информации. Будут совершенствоваться способы передачи информации с учетом скорости, безопасности и качества.

    Виртуальная реальность остаётся одним из самых интересных и загадочных понятий компьютерной индустрии.

    Виртуальная реальность — это образ искусственного мира, моделируемый техническими средствами и передаваемый человеку через ощущения. В данный момент технологии виртуальной реальности широко применяются в различных областях человеческой деятельности.

    По словам учёных и исследователей, в ближайшем будущем персональные компьютеры кардинально изменятся. Примерно в 2020-2025 годах должны появиться молекулярные компьютеры, квантовые компьютеры, биокомпьютеры и оптические компьютеры. Компьютер будущего должен облегчить и упростить жизнь человека ещё в десятки раз!

    Одна из указанных вероятностных альтернатив замены современных компьютеров является создание оптических ЭВМ, носителем информации в которых будет световой сгусток. Проникновение оптических способов в вычислительную технику ведется по трем фронтам. Первое основано на использовании аналоговых интерференционных оптических вычислений для решения отдельных особых задач, связанных с необходимостью быстрого выполнения интегральных преобразований. Второе направление связно с созданием чисто оптических или гибридных соединений, обладающих большей надежностью, чем электрические. И третье направление – создание компьютера, полностью состоящего из оптических устройств обработки информации.

    Другие виды компьютеров – молекулярные.

    Молекулярные компьютеры – это ЭВМ, использующие вычислительные возможности молекул преимущественно биологических, также используется идея вычислительных возможностей расположения атомов в пространстве.

    Квантовый компьютер – ЭВМ, которое путем выполнения квантовых алгоритмов существенно использует при работе эффекты, такие как квантовый параллелизм и квантовая запутанность.

    Нанокомпьютеры – вычислительные устройства на основе электронных технологий с размерами логических элементов порядка нескольких нанометров. Сам компьютер также имеет микроскопические размеры. Другое направление связано с разработками биокомпьютеров – клеточные и ДНК-компьютеры.

    Однако квантовые компьютеры, биокомпьютеры, нанокомпьютеры и другие направления – все это на сегодняшний момент всего лишь гипотетические вычислительные устройства, которые под собой не имеют логических решений.

    Высокие технологии – это будущее и это успех всего человечества. Ежедневно выпускаются новые и более совершенны модели ЭВМ. И на этом процесс развития не остановлен.

    Источник: http://kpet-ks.ru/%D1%83%D1%87%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5-%D0%BC%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%B0%D0%BB%D1%8B/1-%D0%BA%D1%83%D1%80%D1%81/%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D0%BE%D0%BF%D0%BE%D0%BB%D0%B0%D0%B3%D0%B0%D1%8E%D1%89%D0%B8%D0%B5-%D0%BF%D1%80%D0%B8%D0%BD%D1%86%D0%B8%D0%BF%D1%8B-%D1%83%D1%81%D1%82%D1%80%D0%BE%D0%B9%D1%81%D1%82%D0%B2/

    Архитектура ЭВМ. Принципы работы компьютера

    ЭВМ определяется как комплекс взаимосвязанных программно-управляемых технических устройств, предназначенных для автоматизированной обработки данных с целью получения результатов решения вычислительных и информационных задач.

    Основные принципы функционирования компьютера были сформулированные в 1945 году Джоном фон Нейманом.

    1. В основе работы ЭВМ лежит программный принцип, согласно которому все вычисления выполняются путем последовательного выполнения команд программы ЭВМ.

    2. Принцип хранимой программы означает, что программы и данные во время выполнения программы хранятся в одном адресном пространстве в оперативной памяти и различаются не по способу кодирования, а по способу использования. Программа может выступать также в качестве исходных данных (самомодифицируемые программы).

    Читайте так же:  Подача алиментов в браке пакет документов

    3. Использование двоичного кодирования при хранении и обработке данных в ЭВМ. Отдельные разряды двоичного числа объединяются в более крупные единицы, называемые словами.

    4. Информация размещается в ячейках различных запоминающих устройств. Каждая ячейка памяти имеет адрес, по которому происходят запись или считывание слов данных и программ.

    К настоящему время принципы фон Неймана дополнены рядом других принципов:

    открытая архитектура, которая означает, что в основе разработки новых ЭВМ лежат общедоступные стандарты, которые унифицируют взаимодействие различных типов оборудования и отдельных технических узлов ЭВМ. Использование при разработке оборудования открытых стандартов позволяет разным производителям разрабатывать для ЭВМ новые аппаратные средства, заменяющие или дополняющие существующее оборудование;

    модульность построения технической архитектуры состоит в том, что вся ЭВМ состоит из отдельных функционально и конструктивно законченных модулей. Соблюдение этого принципа упрощает процедуру замены устаревших или неработоспособных узлов ЭВМ на современные или рабочие;

    стандартизация технических устройств ЭВМ означает, что все устройства ЭВМ согласованы по своим электрическим, электромагнитным параметрам, протоколам работы, габаритам и т.д.;

    принцип микропрограммирования, заключающийся в том, что машинный язык не является конечной субстанцией, приводящей в действие процессы в ЭВМ. Процессор имеет в своем составе блок микропрограммного управления. Этот блок для каждой команды на машинном языке генерирует последовательность действий-сигналов для физического выполнения требуемой машинной команды. Можно также считать набор команд микропрограммами по отношению к операционной системе.

    При этом под архитектурой ЭВМ понимают абстрактное представление ЭВМ, которое отражает ее структурную, схемотехническую и логическую организацию.

    Понятие архитектуры является комплексным и включает:

    — структурную схему ЭВМ;

    — средства и способы доступа к элементам структурной схемы ЭВМ;

    — организацию и разрядность интерфейсов ЭВМ;

    — организацию и способы адресации памяти;

    — способы представления и форматы данных ЭВМ;

    — набор машинных команд ЭВМ;

    Структура ЭВМ представляет совокупность конструктивных элементов (устройств), из которых состоит ЭВМ, и связей между ними.

    Связь между различными устройствами, представляющую собой физическую магистраль, состоящую из многопроводной линии для передачи электрических сигналов, называют интерфейсной шиной. Различают шины для передачи адресов, управляющих сигналов и данных.

    Перечисленные принципы функционирования ЭВМ предполагают обязательное наличие у ЭВМ следующих устройств:

    ● арифметико-логического устройства (АЛУ), выполняющее арифметические и логические операции;

    ● устройство управления, предназначенное для организации и синхронизации работы всех устройств ЭВМ;

    ● память для хранения данных;

    ● внешние устройства для обеспечения обмена информацией с человеком.

    Обобщенная структурная схема ЭВМ представлена ниже

    В современных компьютерах арифметико-логическое устройство и устрой-ство управления объединены в один блок — процессор, предназначенный для обработки данных по заданной программе путем выполнения арифметических и логических операций и программного управления работой устройств компьютера.

    Все арифметические и логические операции непосредственно выполняются арифметико-логическим устройством.

    Устройство управления формирует и подает во все блоки ЭВМ управляющие импульсы, обусловленные выполняемой командой.

    Для кратковременного хранения данных, непосредственно используемых в вычислениях, имеются специальные ячейки памяти процессора, называемые процессорной памятью или регистрами.

    Под кэш — памятью понимают особый вид быстродействующей памяти, выполняющей в компьютере роль промежуточной памяти (буфера) при обмене данными между быстродействующим устройством ЭВМ и менее быстродействующим с целью уменьшения периодов ожидания более производительного устройства.

    Программы и данные во время непосредственного сеанса работы хранятся в основной (оперативной) памяти компьютера.

    Оперативная память состоит из ячеек памяти одинаковой длины.

    Байт является наименьшей адресуемой единицей оперативной памяти. Для идентификации ячеек в оперативной памяти каждой из них присваивается адрес, представляющий собой номер ячейки.

    Ячейки нумеруются числами из последовательного натурального ряда чисел. Организация оперативной памяти ЭВМ представлена на рис.4.2.

    Запись в память данных осуществляется подачей на шину адреса сигналов, соответствующих адресам ячеек, в которые помещаются данные из шины записи.

    При чтении данных из памяти по шине адреса передаются адреса читаемых ячеек, а сами данные из ячеек передаются по шине чтения. Возможность произвольного доступа к любой из ячеек памяти позволяет называть оперативную память, как память с произвольным доступом (RAM — Random Access Memory).

    Тактовые импульсы вырабатываются генератором тактовых импульсов ЭВМ и используются для синхронизации процессов передачи информации между устройствами. Базовая последовательность импульсов задает тактовую частоту работы процессора и во многом определяет скорость работы ЭВМ.

    Внешние устройства ввода-вывода и хранения данных подключаются к ЭВМ через адаптеры или контроллеры. Основное назначение адаптера состоит в управлении и синхронизации работы внешнего устройства с работой других устройств ЭВМ.

    Устройства вводаобеспечивают считывание данных с определенных устройств (клавиатуры, сканера, графических манипуляторов и других) и преобразование их в последовательности электрических сигналов, воспринимаемых другими устройствами ЭВМ.

    Устройства вывода представляют результаты обработки информации в форме, удобной для визуального восприятия. К таким устройствам относятся принтеры, мониторы, графопостроители.

    Внешние устройства хранения предназначаются для организации долговременного хранения данных и программ. К устройствам внешнего хранения относятся накопители на жестких и гибких дисках, DVD (Digital Video Disk) и CD (Compact Disk) накопители, накопители на магнитных лентах (стримеры), Flasch — память и другие.

    Управление работой внутренних и внешних устройств ЭВМ производится устройством управления процессора через основной набор логических схем компьютера.

    Дата добавления: 2014-01-15 ; Просмотров: 1834 ; Нарушение авторских прав? ;

    Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

    Видео (кликните для воспроизведения).

    Источник: http://studopedia.su/10_107345_arhitektura-evm-printsipi-raboti-kompyutera.html

    Основные принципы устройства и работы эвм
    Оценка 5 проголосовавших: 1

    ОСТАВЬТЕ ОТВЕТ

    Please enter your comment!
    Please enter your name here